42
A team of researchers from Canada, France and Poland has found that electrons inside of some ceramic crystals appear to dissipate in a surprising, yet familiar way—possibly a clue to the reason for the odd behavior of "strange metals." In their paper published in the journal Nature Physics, the researchers describe their experiments to better understand why strange metals behave the way they do.
51
Quantum computing and quantum information processing technology have attracted attention in recently emerging fields. Among many important and fundamental issues in science, solving the Schroedinger equation (SE) of atoms and molecules is one of the ultimate goals in chemistry, physics and their related fields. SE is the first principle of non-relativistic quantum mechanics, whose solutions, termed wave functions, can afford any information of electrons within atoms and molecules, predicting their
Read More
49

Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. They performed simulations to demonstrate the spin properties of these materials and explained the mechanisms behind their behavior. Conventional electronics is based on the movement of electrons and mainly concerns their electric charge. However, modern electronics are close to reaching the physical limits for continuing

Read More
41
A new collaborative study led by a research team at the Department of Energy's Pacific Northwest National Laboratory, University of California, Los Angeles and the University of Washington could provide engineers new design rules for creating microelectronics, membranes and tissues, and open up better production methods for new materials. At the same time, the research, published online Dec. 6 in the journal Science, helps uphold a scientific theory that has remained unproven for over a century.

Just
Read More
43

The standard cosmological model known as LambdaCDM can only explain 5% of the observable Universe. The remaining 95% is famously made up almost entirely of two invisible components called dark matter and dark energy. Yet the physical nature of these two components remains a mystery. A new study by University of Oxford researcher Jamie Farnes suggests both dark phenomena can be unified into a single substance -- a negative-mass ‘dark fluid.’


Latest Comments